SYNTHESIS AND PROPERTIES OF 4,6-Di-t-BUTYL-CYCLOPENTA-1,2-DITHIOLE AND ITS 3-AZA-DERIVATIVE

Klaus Hafner*, Bernd Stowasser, and Volker Sturm Institut für Organische Chemie der Technischen Hochschule, Petersenstr. 22, D-6100 Darmstadt

Sumary: 2,4-Di-t-butyl-cyclopentadiene-1-carbaldehyde (3) and 2,4-di-t-butyl-cyclopentadienone oxime (7) are easily converted into the title compounds 6 and 10 , respectively. The spectroscopic and chemical properties of the new heterocyclic $10 \pi-$ electron systems are described.

Pentafulvenes have proven to be valuable building blocks in the synthesis of numerous carboand heterocyclic conjugated π-electron systems containing at least one 5 -membered ring, e.g., pentalenes ${ }^{1}$, s-indacenes ${ }^{2}$, azulenes ${ }^{3}$, azaazulenes ${ }^{4}$, or cyclopenta[c]pyridazines ${ }^{3}$.

We would like to report simple syntheses of the di-t-butyl derivatives of the bicyclic $10 \pi-$ electron systems 1 and $\underline{2}$, which are isoelectronic with azulene and are representatives of a new

1

$\underline{2}$
type of pseudoazulenes ${ }^{5}$. Quantummechanical studies ${ }^{6}$ of cyclopenta-1,2-dithiole (1) predict this so far unknown heterocyclic system to be stable. The already synthesized indeno[2,1-c]-1,2dithiole ${ }^{7}$ does not allow one to draw conclusions of the physical and chemical properties of the bicyclic system due to the annellation of a benzenoid ring.

Reaction of 2,4-di-t-butyl-cyclopentadiene-1-carbaldehyde (3) ${ }^{8}$, easily accessible from 1,3-di-t-butyl-6-dimethylaminopentafulvene ${ }^{1}$, with trifluoromethanesulfonyl chloride ${ }^{9}$ in the presence of triethylamine, yields 73% of 2,4 -di-t-butyl-5,5-dichlorocyclopentadiene-1-carbaldehyde (4) (yellow rhombic crystals, m.p. $41^{\circ} \mathrm{C}$). With potassium thioacetate, 4 forms 72% of the $4,6-\mathrm{di}-\mathrm{t}-$ butyl-cyclopenta-1,2-dithiole (6) as thermally stable, air sensitive fine light brown crystals (m.p. $42^{\circ} \mathrm{C}$). Presumably 4 reacts with the thioacetate to form 3,5 -di-t-butyl-2-thioformyl-cyclopentadienethione (5) ${ }^{10}$, which then undergoes an $8 \pi-e l e c t r o c y c l i c$ process to $\underline{6}$.

The corresponding 3-aza derivative 10 can be synthesized from 2,4-di-t-butyl-cyclopentadienone oxime (7) (orange-yellow crystals, m.p. $146-147^{\circ} \mathrm{C}$) which is obtained in 75% yield from lithium 1,3-di-t-butyl-cyclopentadienide and i-amyl-nitrite. ${ }^{11}$ Reaction of 7 with sulfur monochloride in THF produces the N-oxide 9 (dark blue fine crystals, m.p. $71^{\circ} \mathrm{C}$) in 70% yield. N-Oxide 9 is quantitatively converted into 10 (violet oil) by treatment with triphenylphosphane. Both bicyclic compounds $\underline{9}$ and $\underline{10}$ are stable towards heat and air. The formation of \underline{g} should proceed

$\underline{9}$

10
by an electrophilic attack of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ on the nitrogen of $\underline{7}$ to give intermediate $\underline{8}$, followed by cyclization to 9 . Primary substitution of the 5 -membered ring of 7 by $\mathrm{S}_{2} \mathrm{Cl}_{2}$ can be ruled out, as 1 resists c-substitution by various electrophilic reagents.

The UV spectra of $\underline{6}$ and 10 resemble those of azulenes and pseudoazulenes. The light absorption of $\underline{6}$ is in good agreement with PPP-calculations ${ }^{6 b}$ for 1. The electron spectrum of the aza derivative 10 shows pronounced influence of the nitrogen atom in a position of low electron density, on the bicyclic 1,2-dithiole system, which effects a bathochromic shift of the longest wave length absorption by 56 nm (Tab. 1). In the ${ }^{1} H-N M R-s p e c t r a ~ o f ~ \underline{6}$ and $\underline{10}$ the signals of the
ring protons are significantly shifted downfield compared to those of pentafulvenes, due to a delocalized $10 \pi-e l e c t r o n ~ s y s t e m . ~$

Both new heterocyclic systems can be reversibly protonated to the conjugated acids. While 6 reacts with trifluoroacetic acid quantitatively to give the stable 4,6-di-t-butyl-4H-cyclopenta-1,2-dithiolium trifluoroacetate (11a) (yellow oil), 10 yields, under the same conditions, the N-protonation product 12 (violet solution in CDCl_{3}) and with trifluoromethanesulfonic acid the tautomeric 3-aza-1, 2-dithiolium salt 11 b (yellow solution in CDCl_{3}). With nucleophiles no addition at the pentafulvene moiety of 6 or 10 takes place. However, like other disulfides ${ }^{12}$, they react by cleavage of the $\mathrm{S}-\mathrm{S}$ bond. With methyl lithium the deep blue 6 -pentafulvenylthiolates

13 a and \underline{b} are obtained, which after hydrolysis to 14 a and \underline{b} and oxidation by air give 40% of the bis (6-pentafulvenyl)-disulfide 15 a (red needles, m.p. $172^{\circ} \mathrm{C}$) and 21% of 15 b (brown needles, m.p. $171^{\circ} \mathrm{C}$).

Tab. 1: Physical data of the compounds $\underline{4}, \underline{6}, \underline{7}, \underline{9}, \underline{10}, \underline{11}, \underline{12}, \underline{15}:^{13}$
4: ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.10(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.36(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 6.44(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 9.96(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHO}) . \mathrm{UV}\left(\lambda_{\max }(\mathrm{nm}, 1 \mathrm{~g} \mathrm{\varepsilon})\right): 221(3.99), 318(3.55)$.
6: ${ }^{1}{ }^{H}-\mathrm{NMR}: \delta=1.32(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) ; 1.34(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) ; 6.75(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) ; 7.70(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$.
$\mathrm{UV}\left(\lambda_{\max }(\mathrm{nm}, \lg \varepsilon)\right): 229(3.72) \mathrm{sh}, 321(3.92), 339(3.70) \mathrm{sh}, 469(3.25)$.
ㄱ: ${ }^{1}{ }_{H}$ mMR: $\delta=1.12(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.24(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 5.95(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 6.3-8.5(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) . \mathrm{Uv}\left(\lambda_{\max }(\mathrm{nm}, 1 \mathrm{gE})\right): 255(4.12), 378(2.56)$.
9: ${ }^{1} \mathrm{H}$-NMR: $\delta=1.17(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.28(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 6.66(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) . \mathrm{UV}\left(\lambda_{\max }(\mathrm{nm}, \mathrm{lg} \varepsilon)\right): 247$ (3.79), 373(2.81), 560(2.73).

10: ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.31(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 7.11(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) . \quad \mathrm{UV}\left(\lambda_{\text {max }}(\mathrm{nm}, 1 \mathrm{ge})\right): 246$ (3.08) sh, $332(3.83) \mathrm{sh}, 339(3.88) \mathrm{sh}, 343(3.89), 352(3.82) \mathrm{sh}, 358(3.71) \mathrm{sh}, 525(3.16)$.

11a: ${ }^{1} \mathrm{H}-\mathrm{NMR:} \delta=1.11(\mathrm{~s}, 9 \mathrm{H}, 4-\mathrm{tBu}), 1.42(\mathrm{~s}, 9 \mathrm{H}, 6-\mathrm{tBu}), 3.67(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=$ $2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})^{14} . \mathrm{UV}\left(\lambda_{\max }(\mathrm{nm}, 1 \mathrm{gE})\right): 246(3.27), 291(3.75), 351(4.19)$.
11b: ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.17(\mathrm{~s}, 9 \mathrm{H}, 4-\mathrm{tBu}), 1.44(\mathrm{~s}, 9 \mathrm{H}, 6-\mathrm{tBu}), 3.88(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=$ $2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) . \operatorname{UV}\left(\lambda_{\max }(\mathrm{nm}, q u a l i t).\right): 388$.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.30(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.36(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 7.10(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
$\mathrm{UV}\left(\lambda_{\text {max }}(\mathrm{nm}, q u a l i t).\right): 333 \mathrm{sh}, 340 \mathrm{sh}, 344,350 \mathrm{sh}, 358 \mathrm{sh}, 524$.
15a: ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.11(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{tBu}), 1.29(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{tBu}), 2.49\left(\mathrm{~s}, 6 \mathrm{H}, 1,1^{\prime}-\mathrm{SCH}_{3}\right), 6.04(\mathrm{~s}, 2 \mathrm{H}$, $\left.3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.52\left(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right) . \mathrm{UV}\left(\lambda_{\max }(\mathrm{nm}, 1 \mathrm{ge})\right): 232(4.11), 308(4.13) \mathrm{sh}, 347(4.44)$, 457(3.55).
15b: ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.16(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{tBu}), 1.22(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{tBu}), 2.77\left(\mathrm{~s}, 6 \mathrm{H}, 1,1^{1}-\mathrm{SCH}_{3}\right), 6.22(\mathrm{~s}, 2 \mathrm{H}$, $\left.3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right) . \mathrm{UV}\left(\lambda_{\max }(\mathrm{nm}, 1 \mathrm{~g} \varepsilon)\right): 232(4.10), 317(3.95) \mathrm{sh}, 362(4.29), 470(3.49) \mathrm{sh}$.

ACKNOWLEDGEMENT

This work was generously supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Degussa AG, Frankfurt/Main.

REFERENCES AND NOTES

1. K. Hafner and H.U. Süss, Angew. Chem. 85, 626(1973); Angew. Chem.Int. Ed. Engl. 12, 575(1973);
K. Hafner and M. Suda, Angew.Chem. 88, 341 (1976); Angew.Chem.Int.Ed.Eng1. 15, 314(1976);
M. Suda and K. Hafner, Terrahedron Lett. 1977, 2449.
2. K. Hafner and H.-P. Krimmer, Angew. Chem. 92, 202(1980); Angew. Chem. Int. Ed. Eng1. 19, 199(1980); K. Hafner, Pure App1. Chem. 54, 939 (1982).
3. K. Hafner, Pure Appl. Chem. 28, 153(1971); K. Hafner, Pure Appl.Chem., Supplement 2, 1 (1971).
4. K. Hafner, J. Heterocycl. Chem. 13, Supplement Vol. III, S-33 (1976).
5. H.-J. Timpe and A.V. El'tsov, Adv. Heterocycl. Chem. 33, 185 (1983).
6. a) R. Zahradnîk and C. Párkányi, Collect. Czech. Chem. Commun. 30, 3016(1965); R. Zahradnik, Adv. Heterocyc1. Chem. 5, 1 (1965); b) J. Fabian, Z. Chem. 12, 348 (1972).
7. K. Hartke and D. Krampitz, Chem. Ber. 107, 739 (1974).
8. H.-P. Krimmer, B. Stowasser, and K. Hafner, Tetrahedron Lett. 1982, 5135.
9. Chlorination of CH -acidic compounds with trifluoromethanesulfonyl chloride: G.H. Hakimelahi and G. Just, Tetrahedron Lett. 1979, 3643.
10. Preparation of thioketones from gem. dichloro compounds with thioacetate: H. Staudinger and H. Freudenberger, Org. Synth., Co11. Vol. II, 573 (1943); A. Schönberg and E. Frese, Chem. Ber. 101, 694, 701 (1968).
11. The unsubstituted cyclopentadienone oxime, prepared by J. Thiele (Ber. Dtsch. Chem. Ges. 33, 666 (1900)) as sodium salt, is thermally unstable and dimerizes even at low temperature.
12. L. Field in "Organic Chemistry of Sulfur", Edit. S. Oae, Plenum Press, New York 1977, p. 303.
13. NMR-spectra were recorded with a Bruker-NMR-spectrometer WM 300 and a Varian-NMR-spectrometer $\mathrm{XL}-100-15$ in CDCl_{3} with tetramethylsilane as internal standard. UV-spectra were recorded with a Beckman spectrophotometer UV 5240 in n-hexane, except 11 b and 12 , which were recorded in solutions of trifluoromethanesulfonic acid or trifluoroacetic acid in dichloromethane. All compounds gave correct elemental analyses.
14. The structure of 11 a was confirmed by NOE-measurement.
